State of Hawaii Annual Summary 2010 Air Quality Data

Loretta J. Fuddy, A.C.S.W., M.P.H. Director of Health

State of Hawaii Department of Health September 2011 Neil Abercrombie Governor of Hawaii

2010 Hawaii Air Quality Data

Contents

LIST OF TABLESii
LIST OF FIGURESiii
Section 1 INTRODUCTION1
Section 2 DEFINITIONS
Section 3 SITE LOCATIONS AND DESCRIPTIONS7
Section 4 2010 AIR QUALITY DATA
Section 5 2010 PM _{2.5} SPECIATION DATA
Section 6 2010 AIR TOXICS DATA
Section 7 AMBIENT AIR QUALITY TRENDS : SLAMS

List of Tables

Table

Title

Page

2-1	State and Federal Ambient Air Quality Standards	6
3-1	State of Hawaii Ambient Air Monitoring Network	15
3-2	Sampling Equipment at Each Monitoring Station	16
4-1	2010 Summary of 24-Hour PM ₁₀ Averages	18
4-2	Attainment Determination of the 24-Hour PM ₁₀ NAAQS	18
4-3	2010 Summary of 24-Hour PM _{2.5} Averages: SLAMS Stations	19
4-4	Attainment Determination of the 24-Hour PM _{2.5} NAAQS: SLAMS Stations	19
4-5	Attainment Determination of the Annual PM _{2.5} NAAQS: SLAMS Stations	19
4-6	2010 Summary of 24-Hour PM _{2.5} Averages: SPM Stations	20
4-7	2010 Summary of 8-Hour O ₃ Averages	20
4-8	Attainment Determination of the 8-Hour O ₃ NAAQS	20
4-9	2010 Summary of 1-Hour and Annual NO ₂ Averages	21
4-10	2010 Summary of 1-Hour CO Averages	21
4-11	2010 Summary of 8-Hour CO Averages	21
4-12	2010 Summary of 3-Hour SO ₂ Averages	22
4-13	2010 Summary of 24-Hour and Annual SO ₂ Averages	23
4-14	2010 Summary of Rolling 3-Month Pb Averages	24
4-15	2010 Summary of 1-Hour H ₂ S Averages (State Standard)	24
4-16	2010 Monthly Maximum 24-Hour PM ₁₀ Values (µg/m ³)	25
4-17	2010 Monthly Maximum 24-Hour PM _{2.5} Values (µg/m ³):SLAMS	26
4-18	2010 Monthly Maximum 24-Hour PM _{2.5} Values (µg/m ³): SPM	27
4-19	2010 Monthly Maximum1-Hour NO ₂ Values (ppm)	28
4-20	2010 Monthly Maximum 1-Hour CO Values (ppm)	29
4-21	2010 Monthly Maximum 8-Hour CO Values (ppm)	30
4-22	2010 Monthly Maximum 8-Hour O ₃ Values (ppm)	31
4-23	2010 Monthly Maximum 3-Hour SO ₂ Values (ppm): SLAMS	32
4-24	2010 Monthly Maximum 3-Hour SO ₂ Values (ppm): SPM	33
4-25	2010 Monthly Maximum 24-Hour SO ₂ Values (ppm): SLAMS	34
4-26	2010 Monthly Maximum 24-Hour SO ₂ Values (ppm): SPM	35
4-27	2010 Monthly Maximum 24-Hour Pb Values (µg/m ³)	36
4-28	2010 Monthly Maximum 1-Hour H ₂ S Values (ppm)	37
5-1	2010 Summary of PM _{2.5} Speciation Data	39
5-2	Speciation Collection and Analysis Methods	40
6-1	2010 Summary of Air Toxics Data	44
6-2	Air Toxics Collection and Analysis Methods	44

List of Figures

Figure

Title

Page

3-1	Island of Oahu Air Monitoring Stations	. 7
3-2	Island of Maui Air Monitoring Station	10
3-3	Island of Hawaii Air Monitoring Stations	11
4-1	2010 Monthly Maximum 24-Hour PM ₁₀ Averages	25
4-2	2010 Monthly Maximum 24-Hour PM _{2.5} Averages: SLAMS Stations	26
4-3	2010 Monthly Maximum 24-Hour PM _{2.5} Averages: SPM Stations	27
4-4	2010 Monthly Maximum 1-Hour NO ₂ Averages	28
4-5	2010 Monthly Maximum 1-Hour CO Averages	29
4-6	2010 Monthly Maximum 8-Hour CO Averages	30
4-7	2010 Monthly Maximum 8-Hour O ₃ Averages	31
4-8	2010 Monthly Maximum 3-Hour SO ₂ Averages: SLAMS Stations	32
4-9	2010 Monthly Maximum 3-Hour SO ₂ Averages: SPM Stations	33
4-10	2010 Monthly Maximum 24-Hour SO ₂ Averages: SLAMS Stations	34
4-11	2010 Monthly Maximum 24-Hour SO ₂ Averages: SPM Stations	35
4-12	2010 Monthly Maximum 24-Hour Pb Averages	36
4-13	2010 Monthly Maximum 1-Hour H ₂ S Averages	37
7-1	PM ₁₀ Annual Average: 2006-2010	46
7-2	PM ₁₀ Maximum 24-Hour Average: 2006-2010	46
7-3	PM _{2.5} Annual Average: 2006-2010	47
7-4	PM _{2.5} 98 th Percentile 24-Hour Average: 2006-2010	47
7-5	SO ₂ Annual Average: 2006-2010	48
7-6	SO ₂ Maximum 24-Hour Average: 2006-2010	48
7-7	NO ₂ Annual Average: 2006-2010	49
7-8	NO ₂ Maximum 1-Hour Average: 2006 – 2010	49
7-9	O ₃ Fourth Highest Daily Maximum 8-Hour Average: 2006-2010	50
7-10	CO Maximum 1-Hour Average: 2006-2010	50
7-11	CO Maximum 8-Hour Average: 2006-2010	51

Section 1 INTRODUCTION

The Department of Health, Clean Air Branch, monitors the ambient air in the State of Hawaii for various gaseous and particulate air pollutants. The U. S. Environmental Protection Agency (EPA) has set national ambient air quality standards (NAAQS) for seven criteria pollutants: carbon monoxide, nitrogen dioxide, sulfur dioxide, lead, ozone, and particulate matter (PM_{10} and $PM_{2.5}$). Hawaii also has a state ambient air standard for hydrogen sulfide. The primary purpose of the statewide monitoring network is to measure ambient air concentrations of these pollutants and ensure that air quality standards are met. Station maintenance and data collection is conducted by the Air Surveillance and Analysis Section of the State Laboratories Division.

In addition to monitoring the ambient air for criteria pollutants, the State of Hawaii also participates in the national $PM_{2.5}$ speciation and air toxics monitoring programs. The EPA determined that speciation was essential for establishing a relationship between particle concentrations and adverse health effects. The data provides valuable information in characterizing aerosols, determining the effectiveness of control strategies, and understanding the effects of particle pollution on atmospheric and regional haze. Toxic air pollutants are substances determined to be hazardous to human health and cause adverse ecological effects. The speciation monitor is located at the Kapolei monitoring station and the air toxics monitor is at the Pearl City station.

Air pollution comes from many different man-made and natural sources. There are industrial sources of pollution such as power plants and refineries; mobile sources, such as cars, trucks, and buses; agricultural sources, such as cane burning; and natural sources, such as windblown dust and volcanic activity. Throughout 2010, the state maintained 14 air monitoring stations on 3 islands. Most commercial, industrial, and transportation activities and their associated air quality effects occur on Oahu, where 5 of the stations are located. The monitoring station on Maui is mainly to measure the air quality impacts from agricultural activities. The majority of stations are located on the island of Hawaii to measure air quality impacts from the volcano and geothermal energy production. The state's ambient air monitoring network is reviewed annually and relocations, additions and/or closures may occur as needed.

This report summarizes the air pollutant data collected at the 14 monitoring stations during calendar year 2010. Summaries compare and show attainment or non-attainment of pollutant concentrations with federal or state ambient air quality standards. Monthly maximum concentrations for each pollutant and averaging period as well as speciation and air toxics data are also displayed. Five-year trend summaries of criteria pollutants are shown graphically.

The Department of Health has a web site that displays near real-time air quality data updated throughout the day from the air monitoring stations. The data has not been

reviewed for quality assurance and is subject to change but provides the public with viewing access to current air pollutant and meteorological information. To view this data online, go to <u>www.hawaii.gov/health/environmental/air/cab/index.html</u> and link to "Hawaii Ambient Air Quality Data."

Additionally, because emissions from the Kilauea volcano are affecting communities on the island of Hawaii on a daily basis, the Department of Health has a website dedicated to displaying short term SO_2 data from stations located on the island. It provides near real-time 15-minute SO_2 averages and advisory level guidance to help individuals protect themselves against possible health effects. To view this data online, go to www.hiso2index.info

To view this entire book as well as the 2008 and 2009 books online, go to: <u>www.hawaii.gov/health/environmental/air/cab/index.html</u> and link to "Hawaii Air Quality Data Book."

Questions or comments regarding data in this report and other air quality information should be addressed to:

Clean Air Branch Department of Health P.O. Box 3378 Honolulu, Hawaii 96801-3378

Phone: (808)-586-4200 Fax: (808)-586-4359

The Department of Health provides access to its programs and activities without regard to race, color, national origin (including language), age, sex, religion, or disability. Write our Affirmative Action Officer at P.O. Box 3378, Honolulu, Hawaii 96801-3378, or call (808)-586-4616 (voice) within 180 days of a problem.

Cover photo is a view of Hanalei Bay on the island of Kauai.

Section 2 DEFINITIONS

98 th Percentile Value	The $PM_{2.5}$ 24-hour average or the maximum daily 1-hour NO ₂ average in the year below which 98% of all values fall		
99 th Percentile Value	The maximum daily 1-hour SO ₂ value in the year below which 98% of all values fall		
Air Toxics	Also known as hazardous air pollutants, these a pollutants known or suspected to cause adverse heal effects if exposed at sufficient concentrations and duration		
Ambient Air	The general outdoor atmosphere, external to buildings, to which the general public has access.		
Ambient Air Quality Standard	A limit in the quantity and exposure to pollutants dispersed or suspended in the ambient air. Primary standards are set to protect public health, including sensitive populations such as asthmatics, children, and the elderly. Secondary standards are set to protect public welfare including protection against visibility degradation, and damage to animals, crops, vegetation and buildings.		
Carbon Monoxide	Carbon monoxide (CO) is a colorless, odorless, tasteless gas under atmospheric conditions. It is produced by the incomplete combustion of carbon fuels with the majority of emissions coming from transportation sources.		
CFR	Code of Federal Regulations is the codification of the general and permanent rules published in the Federal Register by the executive departments and agencies of the Federal government. Title 40 is the Protection of the Environment.		
Collocated	This is a procedure required for a certain percentage of PM_{10} and $PM_{2.5}$ samplers in the monitoring network. Collocated samplers determine precision or variation in the PM_{10} or $PM_{2.5}$ concentration measurements of identical samplers run in the same location under the same sampling conditions.		
Criteria Pollutants	These are the six pollutants for which the EPA has established national air quality standards. The pollutants are ozone, carbon monoxide, nitrogen dioxide, sulfur dioxide, lead and particulate matter (PM_{10} and $PM_{2.5}$).		

EPA	The United States Environmental Protection Agency. A federal agency established to protect human health and the natural environment.
Hydrogen Sulfide	Hydrogen sulfide (H_2S) is a toxic, colorless gas with a characteristic "rotten egg" odor detectable at very low levels. It occurs naturally during the decomposition of organic matter and is also produced during certain industrial processes.
Micron	One micron is one millionth of a meter or approximately 1/25,000 of an inch.
µg/m³	Micrograms per cubic meter. This is the measurement of air quality expressed as mass per unit volume.
ng/m³	Nanograms per cubic meter. One nanogram is one-billionth of a gram, expressed as mass per unit volume.
NAAQS	National Ambient Air Quality Standards. These are pollutant standards that the EPA has established to protect public health and welfare. NAAQS have been set for carbon monoxide, nitrogen dioxide, PM_{10} , $PM_{2.5}$, ozone, sulfur dioxide, and lead. These are commonly referred to as criteria pollutants.
Nitrogen Dioxide	Nitrogen dioxide (NO_2) is a brownish, highly corrosive gas with a pungent odor. It is formed in the atmosphere from emissions of nitrogen oxides (NO_x) . Sources of nitrogen oxides include electric utilities, industrial boilers, motor vehicle exhaust and combustion of fossil fuels. NO_2 is also a component in the atmospheric reaction that produces ground-level ozone.
Ozone	Ozone (O_3) is the main constituent in photochemical air pollution. It is formed in the atmosphere by a chemical reaction of nitrogen oxides (NO_x) and volatile organic compounds (VOCs) in the presence of sunlight. In the upper atmosphere, O_3 shields the earth from harmful ultraviolet radiation; however, at ground level, it can cause harmful effects in humans and plants.
Particulate Matter	This refers to any solid or liquid matter dispersed in the air. Particulate matter (PM) includes dust, soot, smoke, and liquid droplets from sources such as factories, power plants, motor vehicles, construction, agricultural activities, and fires.

PM ₁₀	Particulate matter that is 10 microns or less in aerodynamic diameter. These are considered "coarse" particles, generally from sources such as road and windblown dust, and crushing and grinding operations.
PM _{2.5}	Particulate matter that is 2.5 microns or less in aerodynamic diameter. Considered "fine" particles, these are generally a result of fuel combustion such as from motor vehicles, utility generation and industrial facilities. Fine particles can also be formed when gases, such as sulfur dioxide and nitrogen dioxide, are chemically transformed into particles.
ppbC	Parts per billion carbon denotes one carbon particle in 1,000,000,000 other carbon particles. This is the unit used in measuring certain air toxics parameters.
ррт	Parts per million is one particle in 1,000,000 other particles. It is approximately one drop in 13 gallons.
SLAMS	State and Local Air Monitoring Stations. The Clean Air Act requires that every state establish a network of air monitoring stations for criteria pollutants.
SPM	Special Purpose Monitoring stations. These are stations established to provide data for special studies in support of air program interests and activities. SPM stations supplement the SLAMS network as circumstances require and resources permit.
Sulfur Dioxide	Sulfur dioxide (SO ₂) is a colorless gas that easily combines with water vapor forming sulfuric acid. Emissions of sulfur dioxide are largely from sources that burn fossil fuels such as coal and oil. In Hawaii, another major source of sulfur dioxide emissions is from the eruption of Kilauea Volcano on the Big Island.
VOCs	Volatile Organic Compounds. These compounds are emitted as gases from certain solids or liquids such as paints and lacquers; pesticides; cleansers and disinfectants; automotive products; and hobby supplies including glues and adhesives.
Vog	Vog is a local term used to express volcanic smog. Vog occurs when volcanic gas and particles combine with air and sunlight to produce atmospheric haze.

Table 2-1 State and Federal Ambient Air Quality Standards

Air	Averaging		Standards	
Pollutant	Time Hawaii State Standard	Hawaii State Standard	Federal Primary Standard ^a	Federal Secondary Standard ^b
Carbon Monoxide	1-hour	9 ppm	35 ppm	Nono
(CO)	8-hour	4.4 ppm	9 ppm	NONE
Nitrogen Dioxide	1-hour eff. 1/22/2010		0.100 ppm	
(NO ₂)	Annual	0.04 ppm	0.053 ppm	0.053 ppm
DM	24-hour	150 µg/m ³	150 μg/m ³	150 μg/m ³
P IVI ₁₀	Annual ^c	50 μg/m³		
DM	24-hour		35 µg/m³	35 µg/m ³
P WI2.5	Annual		15 µg/m ³	15 μg/m ³
Ozone (O ₃)	8-hour	0.08 ppm	0.075 ppm	0.075 ppm
	1-hour ^{eff. 6/2/2010}		0.075 ppm	
Sulfur Dioxide	3-hour	0.5 ppm		0.5 ppm
(SO ₂)	24-hour	0.14 ppm	0.14 ppm	
	Annual	0.03 ppm	0.03 ppm	
Lead ^d (Pb)	Calendar Quarter	1.5 µg/m ³	0.15 µg/m ³	0.15 μg/m ³
Hydrogen Sulfide	1-hour	0.025 ppm	None	None

Sources: State standards HAR §11-59; Federal standards 40 CFR Part 50

^a *Primary Standards* set limits to protect public health, including the health of "sensitive" populations such as asthmatics, children and the elderly.

b **Secondary Standards** set limits to protect public welfare, including protection against decreased visibility, damage to animals, crops, vegetation, and buildings.

^c Due to a lack of evidence linking health problems to long-term exposure to coarse particle pollution, EPA revoked the annual PM₁₀ standard effective December 17, 2006. However, the state still has an annual standard.

^d Due to almost non-detectable levels, ambient air monitoring for lead was discontinued in October 1997 with EPA approval. However, since 2003 lead continues to be measured as part of the Air Toxics monitoring program.

Compliance with the National Ambient Air Quality Standards

CO 1-hour:	May not be exceeded more than once per year.
CO 8-hour:	May not be exceeded more than once per year.
NO₂ 1-hour:	The 3-year average of the 98 th percentile daily maximum 1-hour averages must not exceed the standard.
NO ₂ Annual:	Average of all 1-hour values in the year may not exceed the level of the standard.
PM ₁₀ 24-hour:	Must not be exceeded more than one day per year, after compensating for days when monitoring did not occur (estimated number of exceedances)
PM _{2.5} 24-hour:	The 3-year average of the 98 th percentile 24-hour concentrations must not exceed the level of the standard.
PM _{2.5} Annual:	The 3-year average of 24-hour values must not exceed the level of the standard.
Ozone 8-hour:	The 3-year average of the fourth highest daily maximum value must not exceed the level of the standard.
SO ₂ 1-hour:	The 3-year average of the 99 th percentile daily maximum 1-hour averages must not exceed the standard.
SO ₂ 3-hour:	Not be exceeded more than once per year.
SO ₂ 24-hour:	Not be exceeded more than once per year.
SO ₂ Annual:	Average of all 1-hour values in the year may not exceed the level of the standard.
Lead :	Average of all 24-hour values in any calendar quarter may not exceed the level of the standard.

Section 3 SITE LOCATIONS AND DESCRIPTIONS

The following station descriptions include latitude and longitude in decimal degrees and altitude in meters above mean sea level.

Honolulu (DH)			
	Location:	1250 Punchbowl St., Honolulu	
the second se	Latitude:	21.30758	
	Longitude:	-157.85542	
	Altitude:	20 m	
	Parameters:	SO ₂ , CO, PM ₁₀ , PM _{2.5}	
	Established:	February 1971	
	Brief Description:		
	Located in dow	ntown Honolulu on the roof of	
	the Department of Health building, across from		
	the Queen's M	edical Center, in a busy	
	commercial, bu	siness and government district.	

Kapolei (KA)			
	Location:	2052 Lauwiliwili St., Kapolei	
	Latitude:	21.32374	
A SARA TO A	Longitude:	-158.08861	
	Altitude:	17.9 m	
	Parameters:	SO ₂ , CO, NO ₂ , PM ₁₀ , PM _{2.5} ,	
		PM _{2.5} speciation	
	Established:	July 2002	
	Brief Description:		
	Located in the Kapolei Business Park, north of		
	Campbell Industrial Park and next to a		
	drainage canal that separates the park from		
	Barber's Point.		

Pearl City (PC)			
	Location:	860 4 th St., Pearl City	
	Latitude:	21.39283	
the state of	Longitude:	-157.96913	
	Altitude:	23.1 m	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Parameters:	PM ₁₀ , PM _{2.5} , Air Toxics	
	Established:	May 1079	
	Brief Description:		
	Located on the roof of the Leeward Health		
	Center in a commercial, residential and light		
	industrial area approximately 1.5 miles		
	northwest of the Waiau power plant and near		
	the Pearl Harbor Naval Complex.		

Sand Island (SI)		
	Location:	1039 Sand Island Pkwy.,
		Honolulu
	Latitude:	21.30384
	Longitude:	-157.87712
	Altitude:	5.3 m
	Parameters:	O ₃ , PM _{2.5}
	Established:	February 1981
	Brief Description:	
	Located in a light industrial, commercial and	
	recreational are	ea approximately two miles
	downwind of do	owntown Honolulu near the
	entrance to the	Sand Island State Recreation
	Area.	

West Beach (WB)					
51	Location:	Ko'Olina Golf Course, Kapolei			
	Latitude:	21.33274			
	Longitude:	-158.11413			
	Altitude:	14.5 m			
	Parameters:	SO ₂ , NO ₂ , PM ₁₀			
	Established:	February 1991			
	Brief Description:				
7 2121 2001	Within the Ko'Olina resort and residential				
	community next to the Ko'Olina golf course				
	and approximately 1.5 miles northwest of				
	Campbell Indus	strial Park.			

	Kihei (KH)		
T	Location:	Hale Piilani Park, Kihei	
	Latitude:	20.780997	
	Longitude:	-156.44637	
	Altitude:	46.5 m	
	Parameters:	PM _{2.5}	
	Established:	February 1999	
	Brief Description:		
	Located in a residential community park, next		
	to agricultural la	and.	

Figure 3-3: Island of Hawaii - Air Monitoring Stations

Hilo (HL)	
Location:	1099 Waianuenue Ave., Hilo
Latitude:	19.71756
Longitude:	-155.11053
Altitude:	136.8 m
Parameters:	SO ₂ , PM _{2.5}
Established:	January 1997
Brief Descripti	ion:
Located near th station was esta "Kona", or south	he Hilo Medical Center, this ablished to monitor vog during herly wind conditions.

Kona (KN)						
1	Location:	81-1043 Konawaena School				
		Rd., Kona				
	Latitude:	19.50978				
	Longitude:	-155.91342				
T	Altitude:	517.2 m				
	Parameters:	SO ₂ , PM _{2.5}				
	Established:	September 2005				
	Brief Description:					
	Located on the upper campus of Konawaena					
	High School, this station monitors for vog on					
	the west side o	f the island of Hawaii.				

Mt. View 17 (MV17)						
	Location:	17-860 Volcano Rd. Mt. View				
1 1	Latitude:	19.56983				
	Longitude:	-155.08065				
A ANTA	Altitude:	354 m				
The second secon	Parameters:	SO ₂ , PM _{2.5}				
	Established:	December 2007				
	Brief Description:					
	This station was established to monitor vog					
	during southerly wind conditions. The station					
	was closed 10/	27/10 and moved to Mt. View				
	Elementary Scl	hool, approximately 1 mile				
	south.					

Mt. View 23 (MV23)					
ř	Location:	17-1235 Volcano Rd., Mt. View			
	Latitude:	19.57002			
	Longitude:	-155.08046			
	Altitude:	436.5 m			
	Parameters:	SO ₂ , PM _{2.5}			
Į.	Established:	December 2010			
The state of the second	Brief Description:				
	Located on the grounds of the Mt. View				
	Elementary School, this station was				
	established to monitor vog during southerly				
The state of the second st	wind conditions	6.			

Ocean View (OV)					
	Location:	92-6091 Orchid Mauka Circlc,			
T T		Ocean View			
	Latitude:	19.11756			
	Longitude:	-155.77814			
	Altitude:	862.6 m			
State and the state	Parameters:	SO ₂ , PM _{2.5}			
	Established:	April 2010			
	Brief Descript	ion:			
	This station is I	ocated in Hawaii Ocean View			
	Estates at the (Ocean View fire station and			
	monitors for vo	Icanic emissions.			

Pahala (PA)						
	Location:	96-3150 Pikake St., Pahala				
	Latitude:	19.2039				
2	Longitude:	-155.48018				
	Altitude:	320 m				
	Parameters:	SO ₂ , PM _{2.5}				
*	Established:	August 2007				
(E)	Brief Description:					
I I I	The station is on the grounds of the Kau High					
	and Pahala Ele	mentary School, monitoring for				
	volcanic emissi	ons.				

Puna E (PE)					
	Location:	13-763 Leilani Ave., Pahoa			
	Latitude:	19.46399			
	Longitude:	-154.89871			
	Altitude:	207.9 m			
AN 1	Parameters:	SO_2, H_2S			
	Established:	March 1991			
	Brief Description:				
	Located in the subdivision, this emissions from approximately station also mo the volcano due conditions.	Leilani Estates residential s station monitors for the geothermal energy facility 1 mile to the northeast. The nitors for SO ₂ emissions from ring southwesterly wind			

Puna H (PH)					
	Location:	TMK (3)-1-3-46:75, Pahoa			
	Latitude:	19.47183			
	Longitude:	-154.88903			
	Altitude:	200 m			
Constanting of the second s	Parameters:	H ₂ S			
and the second	Established:	November 2002			
	Brief Description:				
	Located in the this station mor geothermal ene mile to the nort	Lanipuna Gardens subdivision, hitors for emissions from the ergy facility approximately 0.4 h.			

	Pollutants Monitored and Station Type									
SITE	PM ₁₀	PM _{2.5}	со	O ₃	SO2	NO ₂	H₂S	MONITORING OBJECTIVE	LAND USE ¹	
OAHU										
Honolulu	S	S	S	-	S	-	-	Population Exposure	Urban and Center City	
Kapolei	S	S,C	S	-	S	S	-	Population Exposure	Urban	
Pearl City	S	S	-	-	-	-	-	Population Exposure	Urban and Center City	
Sand Island	-	S	-	S	-	-	-	Maximum Concentration (O ₃) Transport (PM _{2.5})	Urban and Center City	
West Beach	S	-	-	-	S	S	-	Source Impact	Urban	
MAUI Kihei	-	S	-	-	-	-	-	Source Impact (cane burning) Agricult		
HAWAII										
Hilo	-	SPM	-	-	S	-	-	Population Exposure	Urban	
Kona	-	SPM	-	-	S	-	-	Population Exposure (SO ₂)/ Maximum concentration (PM _{2.5})	Urban	
Mountain View 17 ²	-	SPM	-	-	SPM	-	-	Source Impact	Urban	
Mountain View 23 ³	-	SPM	-	-	SPM	-	-	Source Impact	Agricultural	
Ocean View	-	SPM	-	-	SPM	-	-	Welfare Impact (SO ₂)/ Agricultu		
Pahala	-	SPM	-	-	SPM	-	-	Maximum concentration (SO ₂)/	Urban	
Puna E	-	-	-	-	SPM	-	SPM	Source Impact (FW2.5) Source Impact (geothermal and Agricultural		
Puna H	-	-	-	-	-	-	SPM	Source Impact (geothermal)	Agricultural	

Table 3-1 State of Hawaii Ambient Air Monitoring Network

C = Collocated Site

S = (SLAMS) State and Local Air Monitoring Station SPM = Special Purpose Monitoring Station (for monitoring vog and geothermal energy production)

¹ Land use information is from the State of Hawaii Department of Business Economic Development and Tourism
 ² Mt. View 17 closed 10/27/10
 ³ Mt. View 23 began operating 12/7/10

Table 3-2 Sampling Equipment at Each Monitoring Station

Monitoring Station	PM ₁₀ Continuous Monitor (BAMS)	PM _{2.5} Manual Particulate Monitor	PM _{2.5} Continuous Monitor (BAMS)	CO Continuous Gas Filter Correlation Analyzer	SO ₂ Continuous Pulsed Fluorescence Analyzer	O ₃ Continuous UV Photometric Analyzer	NO ₂ Continuous Chemiluminescence Analyzer	H ₂ S Continuous Pulsed Fluorescence Analyzer
OAHU Honolulu	1		~	~	>			
Kapolei	1	✓	1	1	✓		1	
Pearl City	1		1					
Sand Island			1			1		
West Beach	1				✓		1	
MAUI Kihei			1					
HAWAII Hilo			1		1			
Kona			✓		✓			
Mt. View 17			1		✓			
Mt. View 23			1		1			
Ocean View			1		1			
Pahala			1		✓			
Puna E					✓			1
Puna H								1

Section 4 2010 AIR QUALITY DATA

The Department of Health's Clean Air Branch is responsible for regulating and monitoring pollution sources to ensure that the levels of criteria pollutants remain well below the state and federal ambient air quality standards. The Air Surveillance and Analysis Section in the State Laboratories Division validates data collected from the monitoring stations and ensures that it meets all quality control and assurance requirements.

The monitoring stations in communities near the volcano record higher levels of SO_2 and $PM_{2.5}$, with occasional exceedances of the NAAQS for those pollutants. The EPA considers the volcano a natural, uncontrollable event and therefore the state is requesting exclusion of these NAAQS exceedances from attainment/non-attainment determination.

Similarly, during the New Year's fireworks celebration, the $PM_{2.5}$ NAAQS was exceeded at two monitoring stations. Use of fireworks is an exceptional event and as with the volcano, the state is requesting exclusion of these exceedances from attainment/non-attainment determination.

Excluding the exceedances due to the volcano and fireworks, in 2010 the state of Hawaii was in attainment with all NAAQS.

Explanation of Summary Tables 4-1 through 4-15:

- Summaries are by pollutant and averaging period, with the number of occurrences exceeding the NAAQS or, in Table 4-15, the number of exceedances of the state H₂S standard (there is no federal H₂S standard);
- "Maximum" is the highest and second highest valid values recorded in the year for the averaging period. For PM_{2.5}, the maximum and 98th percentile concentrations are provided and for O₃, the 4th highest daily maximum value is also displayed;
- "Annual Mean" is the arithmetic mean of all valid values recorded in the year;
- "Possible Periods" is the total number of possible sampling periods in the year for the averaging period;
- "Valid Periods" is the total number of acceptable sampling periods after data validation;
- "Percent Recovery" represents the amount of valid periods divided by the possible periods;
- Attainment with the NAAQS is determined according to 40 CFR 50.

Explanation of Figures 4-1 to 4-13 and Tables 4-19 to 4-28:

Data and graphs show the maximum value recorded in each month at each station for the pollutant averaging period compared to the federal and state standards.

	Maxi	imum	Annual Mean		No. of 24-hour Averages Greater than 150 μg/m ³													
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Honolulu	63 ¹	57	12	0	0	0	0	0	0	0	0	0	0	0	0	365	365	100
Kapolei	59	58	15.5	0	0	0	0	0	0	0	0	0	0	0	0	365	349	95.6
Pearl City	70 ¹	58 ¹	19	0	0	0	0	0	0	0	0	0	0	0	0	365	356	97.5
West Beach	92	70	13.9	0	0	0	0	0	0	0	0	0	0	0	0	365	360	98.6

Table 4-1. 2010 Summary of 24-Hour PM_{10} Averages

¹ New Year's fireworks

Table 4-2.	Attainment	Determination	of the	24-Hour	PM ₁₀ NAAQS
------------	------------	---------------	--------	---------	------------------------

Station	Exceedances in 2008	Exceedances in 2009	Exceedances in 2010	Sites in violation of the NAAQS									
Honolulu	0	0	0	0									
Kapolei	0	0	0	0									
Pearl City	0	0	0	0									
West Beach	0	0	0	0									
Attainment: The standard i	Attainment: The standard is not to be exceeded more than once per year on average over 3 years												

Attainment: The standard is not to be exceeded more than once per year on average over 3 years. In 2010, Hawaii was in attainment with the 24-hour PM₁₀ NAAQS.

	Maxi	mum	Annual Mean		No. of 24-hour Averages Greater than 35 μg/m ³													
	1 st High	98 th %	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Honolulu	49.7 ¹	12.2	4.7	1 ¹	0	0	0	0	0	0	0	0	0	0	0	365	361	98.9
Kapolei	61.0 ¹	11.8	4.3	1 ¹	0	0	0	0	0	0	0	0	0	0	0	365	357	97.8
Pearl City	34.8 ¹	13.1	4.4	0	0	0	0	0	0	0	0	0	0	0	0	365	358	98.1
Sand Island	29.9	17.3	10 ²	0	0	0	0	0	0	0	0	0	0	0	0	365	308	84.4
MAUI																		
Kihei	23.5	13.8	4.8	0	0	0	0	0	0	0	0	0	0	0	0	365	332	91

Table 4-3. 2010 Summary of 24-Hour PM_{2.5} Averages : SLAMS Stations

¹ New Year's fireworks ² Does not meet summary criteria, <75% data recovery in 2nd quarter

Table 4-4. Attainment Determination of the 24-Hour PM_{2.5} NAAQS: SLAMS Stations

Station	2008 98 th value	2009 98 th value	2010 98 th value	3-Year Average	Sites in violation of the NAAQS
Honolulu	13	14	12	13	0
Kapolei	21	12	12	15	0
Pearl City	13	12	13	13	0
Sand Island	13	13	17	14	0
Kihei	15	16	14	15	0
		th			2

Attainment: The 3-year average of the 98th percentile values must be less than or equal to 35 μ g/m³. In 2010, Hawaii was in attainment with the 24-hour PM_{2.5} NAAQS.

Table 4-5.	Attainment	Determination	of the	Annual	PM _{2.5}	NAAQS:	SLAMS	Stations
------------	------------	---------------	--------	--------	-------------------	--------	-------	-----------------

Station	2008 Ann. Ave	2009 Ann. Ave	2010 Ann. Ave	3-Year Average	Sites in violation of the NAAQS
Honolulu	4.7	5.0	4.7	4.8	0
Kapolei	4.9	5.4	4.3	4.9	0
Pearl City	4.5	4.9	4.4	4.6	0
Sand Island	5.7	6.9	10	7.5	0
Kihei	5.5	3.8	4.8	4.7	0
Attainment: Th	ne 3-year average of	annual mean values	must be less than 1	5 μg/m ³ .	

	Maxi	mum	Annual Mean			No. of	24-ho	our Ave	erages	s Grea	ater th	an 35	µg/m³					
	1 st High	98 th %	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
HAWAII																		
Hilo	34.8	25.2	5	0	0	0	0	0	0	0	0	0	0	0	0	365	324	89
Kona	63	35.1	18.2	5	1	0	0	0	0	0	0	0	0	0	0	365	359	98
Mt. View 17	42.5	33.5	5.3 ¹	4	0	0	0	0	0	0	0	0	0	-	-	299	292	98
Mt. View 23	14.7	14.7	5.7 ¹	-	-	-	-	-	•	I	-	-	•	-	0	24	24	100
Ocean View	35.5	30.7	16.1 ¹	-	-	-	0	1	0	0	0	0	0	0	0	275	261	95
Pahala	47.2	26.4	8.3	3	0	0	0	0	0	0	0	0	0	0	0	365	353	97

Table 4-6. 2010 Summary of 24-Hour PM_{2.5} Averages : SPM Stations

These special purpose stations were established to monitor ambient air concentrations of PM_{2.5} from volcanic emissions. Volcanic eruptions are considered uncontrollable natural events and therefore EPA may exclude the exceedances of the 24-hour NAAQS from attainment determinations.

Does not meet summary criteria, <75% data recovery. Mt. View17 shutdown 10/27/10, Mt. View23 began on 12/8/10, and Ocean View began 4/1/10

Þ	ა
C	\supset

Table 4-7. 2010 Summary of 8-Hour O₃ Averages

	N	laximur	n	Annual Mean	No.	of Da	ily Ma	kimun	n 8-Ho	ur Ave	erage	s Grea	ter tha	n 0.07	75 ppn	า			
	1 st High	2 nd High	4 th High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																			
Sand Island	0.052	0.048	0.047	0.026	0	0	0	0	0	0	0	0	0	0	0	0	8755	8730	99.7

Table 4-8. Attainment Determination of the 8-Hour O₃ NAAQS

Station	2008 4 th highest	2009 4 th highest	2010 4 th highest	3-Year Average	Site in violation of the NAAQS
Sand Island	0.043	0.048	0.047	0.046	0
Attainment: Th In 2010, Hawa	ne 3-year average of th ii was in attainment	ne annual 4 th highest o with the 8-hour O ₃ N	daily maximum 8-hour AAQS.	average must be less	than or equal to 0.075 ppm

	Maxin I	num 1- nr	Annual Mean	N	o. of D	aily M	aximu	ım 1-H	our Av	/erag	es Gre	ater th	an 0. ⁻	100 pp	m			
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Kapolei	0.033	0.027	0.003	0	0	0	0	0	0	0	0	0	0	0	0	8760	7773	88.7
West Beach	0.029	0.025	0.002	0	0	0	0	0	0	0	0	0	0	0	0	8760	8114	92.6
Attainment of In 2010, Haw	the ani	nual NO	2 NAAQS: The a number of the single states and the second states and the states areas and the states areas and the states areas and the states areas areas and the states areas areas and the states areas a	annual mean shall not exceed 0.053 ppm.														

Table 4-9. 2010 Summary of 1-Hour¹ and Annual NO₂ Averages

Table 4-10. 2010 Summary of 1-Hour CO Averages

	Maxi	mum	Annual Mean			No. o	f 1-ho	ur Ave	rages	Grea	ter that	an 35 p	opm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Honolulu	1.8	1.5	0.4	0	0	0	0	0	0	0	0	0	0	0	0	8760	8699	99.3
Kapolei	1.6	1.5	0.2	0	0	0	0	0	0	0	0	0	0	0	0	8760	7956	90.8
Attainment: In 2010, Haw	l-hour v aii was	alues r in atta	not to exceed 35	eed 35 ppm more than once per year. with the 1-hour CO NAAQS.														

	Maxi	mum	Annual Mean			No. c	of 8-ho	our Ave	erages	Grea	ater tha	an 9 p	pm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Honolulu	0.8	0.8	0.4	0	0	0	0	0	0	0	0	0	0	0	0	8755	8731	99.7
Kapolei	1.0	0.8	0.2	0	0	0	0	0	0	0	0	0	0	0	0	8755	8344	95.3
Attainment: 8 In 2010, Haw	B-hour v aii was	alues r in atta	not to exceed 9 p ainment with the	om more than once per year. 8-hour CO NAAQS.														

	Maxi	mum	Annual Mean	No. of 3-hour Averages Greater than 0.500 ppm														
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAMS	station	6															
Honolulu	0.010	0.010	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2869	98.3
Kapolei	0.012	0.011	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2447	83.8
West Beach	0.009	0.008	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2506	85.8
HAWAII	SPM st	ations (s	ee NOTE)															
Hilo	0.742	0.715	0.007	2	1	0	0	0	0	0	0	0	0	0	0	2920	2540	87
Kona	0.150	0.095	0.006	0	0	0	0	0	0	0	0	0	0	0	0	2920	2625	90
Mt. View 17	0.960	0.850	0.006	4	0	0	0	0	0	0	0	0	0	-	-	2392	2162	90
Mt. View 23	0.110	0.090	0.013	-	-	-	-	-	-	-	-	-	-	-	0	192	183	95
Ocean View	0.550	0.430	0.02	-	-	-	0	0	0	0	0	0	0	0	0	2200	2014	92
Pahala	1.0	1.0	0.073	14	2	3	0	3	2	1	0	0	0	0	1	2920	2744	94
Puna E	0.119	0.055	0.001	0	0	0	0	0	0	0	0	0	0	0	0	2920	2752	94

Table 4-12. 2010 Summary of 3-Hour SO₂ Averages

Attainment: 3-hour values not to exceed 0.500 ppm more than once per year.

In 2010, Hawaii was in attainment with the 3-hour SO₂ NAAQS (SLAMS stations only).

NOTE: The SPM stations were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Volcanic eruptions are considered natural events and therefore EPA may exclude the exceedances of the 3-hour NAAQS from attainment determinations.

	Maxi	imum	Annual Mean		I	No. of	24-ho	ur Ave	rages	Grea	ter tha	an 0.14	0 ppn	า				
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU	SLAM	S Statio	ns															
Honolulu	0.004	0.003	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	365	100
Kapolei	0.004	0.004	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	352	96.4
West Beach	0.003	0.003	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	361	98.9
HAWAII	SPM S	Stations	(see NOTE)															
Hilo	0.212	0.144	0.007	1	0	0	0	0	0	0	0	0	0	0	0	365	340	93
Kona	0.039	0.034	0.006	0	0	0	0	0	0	0	0	0	0	0	0	365	344	94
Mt. View 17	0.220	0.220	0.006	4	0	0	0	0	0	0	0	0	0	-	-	299	288	96
Mt. View 23	0.030	0.030	0.013	-	-	-	-	-	-	-	-	-	-	-	0	24	24	100
Ocean View	0.148	0.120	0.020	-	-	-	1	0	0	0	0	0	0	0	0	275	258	94
Pahala	0.519	0.397	0.073	8	7	12	0	7	2	2	0	1	1	0	0	365	351	96
Puna E	0.025	0.018	0.001	0	0	0	0	0	0	0	0	0	0	0	0	365	363	99
Attainment: 2	24-hour	values	not to exceed 0.	14 ppr	n mor	e than		per y	ear.			<u>م</u>						

Table 4-13. 2010 Summary of the 24-Hour and Annual SO₂ Averages

In 2010, Hawaii was in attainment with the 24-hour SO₂ NAAQS (SLAMS stations only).

NOTE: The SPM stations were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Volcanic eruptions are considered natural events and therefore EPA may exclude the exceedances of the 24-hour NAAQS from attainment determinations.

Attainment: Annual average (from SLAMS stations only) not to exceed 0.03 ppm. In 2010, Hawaii was in attainment with the annual SO_2 NAAQS.

NOTE: The SPM stations were established to monitor ambient air concentrations of SO₂ from volcanic emissions. Volcanic eruptions are considered natural events and therefore EPA may exclude the exceedances of the annual NAAQS from attainment determinations.

	Max	imum	Annual Mean		Ν	lo. of	3-mon	th Ave	erages	Grea	ter that	an 0.15	i μg/m	3				
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
OAHU																		
Pearl City	0.0041	0.0038	0.0012	0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0													
Rolling 3-month	average is	the mean va	lue of the current m	onth an	and the previous two months.													
Attainment: 7 (The maximum 3 In 2010, Haw	The maxi B-month roll Vaii was i	mum 3-mo ing average n attainm	onth rolling aver in the past 38 mont eent of the Pb N	age in h period	ige in the past 38 months not to exceed 0.15 μg/m ³ . period beginning November 2007 and ending December 2010 was 0.0096 μg/m ³) AAQS.													

Table 4-14. 2010 Summary of Rolling 3-month Pb Averages

Table 4-15. 2010 Summary of 1-Hour H₂S Averages (State Standard)

	Max	imum	Annual Mean			No. of	1-hou	ur Ave	rages	Great	er tha	n 0.02	5 ppm					
	1 st High	2 nd High	All Hours	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Possible Periods	Valid Periods	Percent Recovery
HAWAII																		
Puna E	0.006	0.005	0.002	0	0	0	0	0	0	0	0	0	0	0	0	8760	7978	91
Puna H	0.019	0.015	0.002	0	0	0	0	0	0	0	0	0	0	0	0	8760	7656	87
Attainment of In 2010. Haw	the sta	ite stand s in atta	lard: 1-hour val	lues not to exceed 0.025 ppm. state 1-hour H₂S standard.														

Figure 4-1. 2010 Monthly Maximum 24-Hour PM₁₀ Averages

Table 4-16. 2010 Monthly Maximum 24-Hour PM₁₀ Values (µg/m³)

	Honolulu	Kapolei	Pearl City	West Beach
Jan	63	59	70	70
Feb	57	27	30	40
Mar	25	58	31	36
Apr	57	27	29	21
Мау	31	27	36	24
June	20	20	25	92
Jul	14	31	21	52
Aug	14	20	20	17
Sept	11	18	20	14
Oct	19	26	34	20
Nov	24	23	33	29
Dec	34	44	58	27

State and Federal standard: 150 μ g/m³

Values in red occurred during the New Year's fireworks celebrations on January 1 and December 31.

Figure 4-2. 2010 Monthly Maximum 24-Hour PM_{2.5} Averages: SLAMS Stations

Table 4-17. 2010 Monthly Maximum 24-Hour PM_{2.5} Values (µg/m³): SLAMS

	Honolulu	Kapolei	Pearl City	Sand Island	Kihei
Jan	49.7	61	34.8	29.9	21.6
Feb	10.6	11.8	9.3	14.4	12.8
Mar	10.7	11.2	9.5	15.7	14.1
Apr	9.3	8.9	8.7	9.6	9.9
Мау	13.1	7.5	15.5	17.3	14.2
June	8.4	6.5	6.5	18.9	10.9
Jul	7.3	5.7	4.9	15.3	23.5
Aug	8	5.5	5.7	11.7	10.4
Sept	4.7	3.3	4.3	11.2	5.1
Oct	5.9	4.7	8	14.8	11
Nov	6.7	8.1	8.3	13.9	6
Dec	25.7	32.2	30	27.8	10

Federal standard: 35 µg/m³

Values in red occurred during the New Year's fireworks celebrations on January 1 and December 31. Exceptional event documentation has been submitted to EPA for the exceedances at the Honolulu and Kapolei stations that occurred on January 1, 2010.

Figure 4-3. 2010 Monthly Maximum 24-Hour PM_{2.5} Averages: SPM Stations

Table 4-18. 201	10 Monthly Maximum	24-Hour PM _{2.5} Values	s (µg/m³): SPM
-----------------	--------------------	----------------------------------	----------------

	Hilo	Kona	Mt. View 17	Ocean View	Pahala
Jan	34.8	63	42.5	station not estab.	47.2
Feb	25.2	36.6	22.5	station not estab.	26
Mar	10.8	34.5	8.7	station not estab.	22.2
Apr	6.6	33.7	7.4	28.8	26.4
May	11.6	35.1	6.5	35.5	13.2
June	14.5	27	11.4	30.7	14.6
Jul	4.5	24.7	4.7	25.3	13.4
Aug	4	26.5	7.5	24.5	12.5
Sept	4.9	22.7	4.8	25	12
Oct	11.5	19.1	9.4	19.7	13.5
Nov	12.5	21	station closed	17.2	14.2
Dec	11.2	22.6	station closed	20.2	15.3

Federal standard: 35 μ g/m³

Value in red due to brushfires occurring in the Kona area, near the monitoring station. These SPM stations were established to monitor the effects of volcanic emissions on the island of Hawaii.

Mt. View 17 shut down on 10/27/10 and Mt. View 23 began operating 12/7/10. The maximum 24-hour $PM_{2.5}$ value for Mt. View 23 in December was 14.8 μ g/m³.

Figure 4-4. 2010 Monthly Maximum 1-Hour NO₂ Averages

Table 4-19. 2010 Monthly Maximum 1-Hour NO₂ Values (ppm)

	Kapolei	West Beach
Jan	0.033	0.025
Feb	0.027	0.029
Mar	0.014	0.02
Apr	0.009	0.016
May	0.016	0.016
June	0.026	0.013
Jul	0.02	0.02
Aug	0.025	0.014
Sept	0.013	0.01
Oct	0.018	0.014
Nov	0.019	0.014
Dec	0.023	0.015

Federal standard: 0.100 ppm effective January 22, 2010.

Figure 4-5. 2010 Monthly Maximum 1-Hour CO Averages

Table 4-20. 2010 Monthly Maximum 1-Hour CO Values (ppm)

	Honolulu	Kapolei
Jan	1.8	1.6
Feb	1.2	1
Mar	1.1	0.8
Apr	0.5	0.5
May	0.8	1.3
June	0.6	0.4
Jul	0.7	1.2
Aug	0.6	0.5
Sept	1.1	0.5
Oct	0.7	0.6
Nov	1.2	0.7
Dec	1	0.8

State standard: 9 ppm

Federal standard: 35 ppm

Figure 4-6. 2010 Monthly Maximum 8-Hour CO Averages

Table 4-21. 2010 Monthly Maximum 8-Hour CO Values (ppm)

	Honolulu	Kapolei
Jan	0.8	1
Feb	0.7	0.8
Mar	0.8	0.4
Apr	0.4	0.4
May	0.7	0.6
June	0.6	0.3
Jul	0.5	0.4
Aug	0.5	0.4
Sept	0.7	0.4
Oct	0.4	0.4
Nov	0.7	0.4
Dec	0.7	0.4

State standard: 4.4 ppm

Federal standard: 9 ppm

Figure 4-7. 2010 Monthly Maximum 8-Hour O₃ Averages

Table 4-22. 2010 Monthly Maximum 8-Hour O₃ Values (ppm)

	Sand Island
Jan	0.044
Feb	0.045
Mar	0.049
Apr	0.052
Мау	0.037
June	0.036
Jul	0.027
Aug	0.033
Sept	0.027
Oct	0.03
Nov	0.04
Dec	0.041

Federal standard: 0.075 ppm

Figure 4-8. 2010 Monthly Maximum 3-Hour SO₂ Averages: SLAMS Stations

Table 4-23. 2010 Monthly Maximum 3-Hour SO₂ Values (ppm): SLAMS

	Honolulu	Kapolei	West Beach
Jan	0.01	0.008	0.007
Feb	0.01	0.012	0.007
Mar	0.002	0.003	0.005
Apr	0.001	0.003	0.002
May	0.009	0.005	0.002
June	0.002	0.005	0.003
Jul	0.003	0.003	0.009
Aug	0.002	0.003	0.003
Sept	0.002	0.002	0.003
Oct	0.003	0.01	0.006
Nov	0.005	0.005	0.005
Dec	0.005	0.004	0.008

State and Federal standard: 0.500 ppm

Figure 4-9. 2010 Monthly Maximum 3-Hour SO₂ Averages: SPM Stations

Table 4-24. 2010 Monthly Maximum 3-Hour SO₂ Values (ppm): SPM

	Hilo	Kona	Mt. View 17	Ocean View	Pahala	Puna E
Jan	0.742	0.053	0.956	station not estab.	1.0	0.119
Feb	0.709	0.150	0.194	station not estab.	0.673	0.025
Mar	0.018	0.061	0.033	station not estab.	0.724	0.001
Apr	0.005	0.035	0.003	0.409	0.430	0.002
May	0.027	0.049	0.028	0.550	0.782	0.001
June	0.219	0.021	0.032	0.188	0.958	0.002
Jul	0.004	0.027	0.002	0.358	0.644	0.001
Aug	0.005	0.032	0.001	0.208	0.369	0.002
Sept	0.004	0.041	0.006	0.263	0.520	0.009
Oct	0.035	0.012	0.035	0.212	0.542	0.002
Nov	0.137	0.018	station closed	0.159	0.319	0.002
Dec	0.121	0.023	station closed	0.169	0.586	0.012

State and Federal standard: 0.500 ppm

These SPM stations were established to monitor the effects of volcanic emissions on the island of Hawaii. Hilo and Kona are SLAMS stations.

Mt. View 17 shut down on 10/27/10 and Mt. View 23 began operating 12/7/10. The maximum 3-hour SO₂ value for Mt. View 23 in December was 0.107 ppm.

Figure 4-10. 2010 Monthly Maximum 24-Hour SO₂ Averages: SLAMS Stations

Table 4-25. 2010 Monthly Maximum 24-Hour SO₂ Values (ppm): SLAMS

	Honolulu	Kapolei	West Beach
Jan	0.004	0.004	0.003
Feb	0.002	0.004	0.001
Mar	0.001	0.002	0.001
Apr	0.001	0.003	0.001
Мау	0.003	0.003	0.001
June	0.002	0.003	0.002
Jul	0.002	0.003	0.003
Aug	0.002	0.002	0.002
Sept	0.001	0.001	0.001
Oct	0.001	0.003	0.002
Nov	0.002	0.002	0.002
Dec	0.002	0.002	0.002

State and Federal standard: 0.140 ppm

Figure 4-11. 2010 Monthly Maximum 24-Hour SO₂ Averages: SPM Stations

Table 4-26. 2010 Monthly Maximum 24-Hour SO₂ Values (ppm): SPM

	Hilo	Kona	Mt. View 17	Ocean View	Pahala	Puna E
Jan	0.212	0.030	0.222	station not estab.	0.519	0.025
Feb	0.129	0.034	0.053	station not estab.	0.196	0.005
Mar	0.005	0.039	0.006	station not estab.	0.232	0.001
Apr	0.003	0.012	0.001	0.148	0.126	0.001
May	0.011	0.019	0.005	0.120	0.223	0.001
June	0.052	0.011	0.009	0.064	0.214	0.001
Jul	0.003	0.011	0.001	0.073	0.167	0.001
Aug	0.004	0.012	0.001	0.053	0.117	0.001
Sept	0.002	0.014	0.002	0.075	0.203	0.002
Oct	0.008	0.006	0.008	0.051	0.158	0.001
Nov	0.035	0.008	station closed	0.046	0.108	0.001
Dec	0.040	0.014	station closed	0.071	0.136	0.004

State and Federal standard: 0.140 ppm

These SPM stations were established to monitor the effects of volcanic emissions on the island of Hawaii. Hilo and Kona are SLAMS stations.

Mt. View 17 shut down on 10/27/10 and Mt. View 23 began operating 12/7/10. The maximum 24-hour SO₂ value for Mt. View 23 in December was 0.031 ppm.

Figure 4-12. 2010 Monthly Maximum 24-Hour Pb Averages

Table 4-27. 2010 Monthly Maximum 24-Hour Pb Values (µg/m³)

	Pearl City
Jan	0.0028
Feb	0.0024
Mar	0.0042
Apr	0.0024
May	0.0014
June	0.0010
Jul	0.0020
Aug	0.0018
Sept	0.0025
Oct	0.0035
Nov	0.0038
Dec	0.0026

There is no 24-hour federal or state Pb standard. The NAAQS for Pb is a rolling 3-month average not to exceed 0.15 μ g/m³.

Figure 4-13. 2010 Monthly Maximum 1-Hour H₂S Averages

Table 4-28. 2010 Monthly Maximum 1-Hour H₂S Values (ppm)

	Puna E	Puna H
Jan	0.003	0.006
Feb	0.003	0.003
Mar	0.003	0.003
Apr	0.003	0.019
Мау	0.003	0.005
June	0.006	0.004
Jul	0.005	0.004
Aug	0.004	0.004
Sept	0.005	0.007
Oct	0.003	0.005
Nov	0.003	0.007
Dec	0.003	0.004

State standard: 0.025 ppm

Section 5 2010 PM_{2.5} SPECIATION DATA

Atmospheric aerosols are solid or liquid particles suspended in air that come directly from a variety of sources (primary) or are formed by chemical reactions (secondary). Primary and secondary particles tend to have long lifetimes in the atmosphere and can travel long distances, up to hundreds or perhaps thousands of miles. Sources include dust from roads, construction, and agriculture; combustion particles from motor vehicles, electric utilities and agricultural burning; and particles from natural sources such as the ocean or volcano.

Most of the $PM_{2.5}$ is a combination of the following components: sulfates, nitrates, ammonium, elemental carbon, organic compounds, water and metals. The EPA selected target particulates of interest based on data use objectives, primary constituents of $PM_{2.5}$, and the capability and availability of current analytical methods.

The filter-based speciation sampler collects samples once every 6 days for analyses performed by an EPA contract laboratory. The speciation sampler is located at the Kapolei monitoring station.

Table 5-1 lists the parameters measured, highest and second highest values recorded in the year, the annual arithmetic mean of all valid samples and the total number of samples collected in the year. Table 5-2 lists the analysis methods for each parameter.

With the exception of lead, there are no ambient air quality standards for the individual components of speciated $PM_{2.5}$.

For more information on EPA's speciation program, go to: <u>www.epa.gov/ttn/amtic/speciepg.html</u>

Parameter	1 st High (µg/m³)	2 nd High (µg/m³)	Annual Mean (µg/m ³)	No. of Samples	Percent Recovery
CARBON					
Organic Carbon	0.764	0.615	0.3514	57	93
Elemental Carbon	0.45	0.334	0.1	57	93
METALS					
Aluminum	0.094	0.091	0.0216	60	98
Antimony	0.058	0.054	0.209	60	98
Arsenic	0.001	0.001	0.0008	60	98
Barium	0.030	0.030	0.0065	60	98
Bromine	0.004	0.004	0.0012	60	98
Cadmium	0.031	0.021	0.0087	60	98
Calcium	0.142	0.130	0.0496	60	98
Cerium	0.044	0.043	0.0066	60	98
Cesium	0.023	0.023	0.0067	60	98
Chlorine	2.1	1.65	0.5381	60	98
Chromium	0.009	0.002	0.0013	60	98
Cobalt	0.002	0.001	0.0007	60	98
Copper	0.009	0.003	0.0012	60	98
Indium	0.022	0.017	0.103	60	98
Iron	0.095	0.083	0.0268	60	98
Lead	0.003	0.003	0.0017	60	98
Magnesium	0.164	0.140	0.037	60	98
Manganese	0.002	0.002	0.001	60	98
Nickel	0.014	0.013	0.003	60	98
Phosphorus	0.008	0.008	0.0057	60	98
Potassium	0.103	0.077	0.0237	60	98
Rubidium	0.002	0.002	0.0011	60	98
Selenium	0.002	0.001	0.0011	60	98
Silicon	0.27	0.231	0.111	60	98
Silver	0.019	0.019	0.0087	60	98
Sodium	1.19	1.04	0.3416	60	98
Strontium	0.009	0.003	0.0014	60	98
Sulfur	2.1	1.42	0.2736	60	98
Tin	0.018	0.018	0.0122	60	98
Titanium	0.006	0.005	0.0025	60	98
Vanadium	0.004	0.004	0.0017	60	98
Zinc	0.007	0.007	0.0015	60	98
Zirconium	0.012	0.012	0.0041	60	98

Table 5-1. 2010 Summary of PM_{2.5} Speciation Data

Table 5-1 Continued

Parameter	1 st High (µg/m³)	2 nd High (µg/m³)	Annual Mean (µg/m ³)	No. of Samples	Percent Recovery
IONS					
Ammonium Ion	2.04	0.73	0.112	60	98
Potassium Ion	0.09	0.08	0.019	60	98
Sodium Ion	1.08	0.94	0.428	60	98
Total Nitrate	0.55	0.52	0.45	60	98
Sulfate	6.72	4.73	0.89	60	98

Table 5-2. Speciation Collection and Analysis Methods

Parameter	Collection Method	Analysis Method
Carbon	URG 300N Quartz Filter	Thermal Optical Transmittance
Metals	Met-One SASS Teflon Filter	Energy Dispersive X-Ray Fluorescence
lons	Met-One SASS Nylon Filter	Ion Chromatography

¹ Trademarked equipment: Speciation Air Sampling System

Section 6 2010 AIR TOXICS DATA

The Clean Air Act identified 188 hazardous air pollutants (HAPs) that have been associated with adverse environmental and health effects. Ambient monitoring for air toxics is just one element of the entire air toxics assessment process which may also include regulatory approaches.

A subset of 33 HAPs was selected in EPA's Urban Air Toxics Strategy as having the greatest impact on the public and environment in urban areas. National monitoring efforts have been directed towards these 33 HAPs, and based on consultation with the EPA, a review of available methodology and resource limitations, the state has focused its monitoring efforts on 17 of these 33 HAPs. The following is a brief description of the 17 air toxics being monitored at the Pearl City station. The descriptions are from the EPA website on air toxics which can be found at <u>www.epa.gov/ttnatw01/hlthef/hapindex.html</u>.

There are no ambient air quality standards for air toxics.

Volatile Organic Compounds (VOC)

Benzene

Uses: constituent in motor fuels; solvent for fats, waxes, resins, oils, inks, paints, plastics and rubber.

Sources: emissions from burning of coal and oil, gasoline service stations and motor vehicle exhaust.

• <u>1,3-Butadiene</u>

Uses: used in production of rubber and plastics and in copolymers including acrylics. *Sources*: motor vehicle exhaust, manufacturing and processing facilities, forest fires or other combustion, cigarette smoke.

• <u>Carbon tetrachloride</u>

Uses: used to make refrigerants and propellants for aerosol cans, as a solvent for oils, fats, lacquers, varnishes, waxes, and resins, and as a grain fumigant and dry cleaning agent.

Sources: accidental releases from production and uses and in indoor air from building materials or products and in cleaning agents used in the home.

<u>Chloroform</u>

Uses: mainly to make the refrigerant HCFC-22.

Sources: release associated with its manufacture and use, as well as its formation in the chlorination of drinking water, wastewater, and swimming pools. Also may be emitted by pulp and paper mills, hazardous waste sites and landfills.

• <u>1,2-Dichloropropane</u>

Uses: as a chemical intermediate in the production of chlorinated organic chemicals; as an industrial solvent; in photographic film manufacture; for paper coating and petroleum catalyst regeneration.

Sources: mainly occupational exposures or from evaporation from wastewater that contains the chemical.

• <u>Dichloromethane</u>

Uses: paint strippers and removers; as a metal cleaning and finishing solvent in electronics manufacturing; as an agent in urethane foam blowing; and as a propellant in aerosols for paints, automotive products and insect sprays.

Sources: occupational and consumer exposure from spray painting or other aerosol uses.

• <u>Tetrachloroethylene</u> (perchloroethylene or PERC) Uses: dry cleaning and metal degreasing operations. Sources: mainly occupational exposure.

<u>Trichloroethylene</u>

Uses: industrial degreasing of metal parts.

Sources: in the vapor of degreasing operations; in consumer products such as correction fluids, paint removers and strippers, adhesives, spot removers and rug-cleaning fluids.

 <u>Vinyl chloride</u> Uses: used to make polyvinyl chloride (PVC). Sources: outgas from new plastic parts such as in new cars.

Aldehydes

<u>Acetaldehyde</u>

Uses: used in the production of perfumes, polyester resins and dyes. Also used as a fruit and fish preservative, as a flavoring agent, a denaturant for alcohol, in fuel and as a solvent in rubber, tanning and paper industries.

Sources: ubiquitous in the environment; formed as a product of incomplete wood combustion in fireplaces and woodstoves, coffee roasting, burning tobacco and vehicle exhaust fumes.

Formaldehyde

Uses: mainly in manufacturing resins and particleboard products. Also used as an analytical reagent, and in concrete and plaster additives, cosmetics, disinfectants, fumigants, photography and wood preservation.

Sources: in indoor air as it is released from various consumer products such as building materials and home furnishings. Found in ambient air from power plants, manufacturing facilities, incinerators, auto exhaust emissions, and from smoking.

Metals

Beryllium

Uses: used in electrical components, tools, structural components for aircraft, missiles, and satellites and used in products such as televisions, calculators and personal computers.

Sources: airborne exposure can be from the burning of coal and oil, and from tobacco smoke.

<u>Cadmium</u>

Uses: a byproduct from smelting of zinc, lead, or copper ores, it is also used to manufacture pigments and batteries and in the metal-plating and plastics industries. *Sources:* a major source in the ambient air is from the burning of fossil fuels and from municipal waste incinerators. Smoking is also another source of cadmium.

• <u>Chromium</u>

Uses: metal chromium is used in making steel and alloys. Chromium compounds are used for chrome plating, in the manufacture of dyes and pigments, in leather and wood preservation, and small amounts may be used in copying machine toner.

Sources: occurs naturally in rocks, plants, soils and in volcanic dust and gases. Industrial sources include cement-producing plants, automobile brake lining and catalytic converters, and leather tanneries.

Lead

Uses: primary use is in the manufacture of batteries. Also in the production of sheet lead, in solder and pipes, and in ceramic glazes, paint, ammunition and cable covering.

Sources: the largest source prior to 1996 was from leaded gasoline, however since EPA banned its use in gasoline, airborne lead levels have decreased dramatically. Other airborne sources include combustion of solid waste, coal and oil and from tobacco smoke.

<u>Manganese</u>

Uses: primarily in the production of steel, dry-cell batteries, matches, and fireworks. Manganese sulfate is used as fertilizer and is found in glazes and varnishes. Potassium permanganate is used for water purification and in waste-treatment plants. *Sources*: naturally occurring, it is found in rock and soil. It can also be released into the air by power plants and coke ovens.

<u>Nickel</u>

Uses: used for nickel alloys, electroplating, batteries, coins, industrial plumbing, spark plugs, machinery parts, stainless-steel, and in nickel-chrome wires and catalysts.

Sources: a natural element, it is found in small amounts in food, water, soil and air. Exposure in the ambient air is from oil and coal combustion, nickel metal refining, sewage sludge incineration, manufacturing facilities and through activities such as smoking and use of stainless steel cooking and eating utensils.

Parameter	1 st High ppbC	2 nd High ppbC	Annual Arithmetic Mean	No. of Samples	Percent Recovery
VOCs					
Benzene	4.98	4.14	1.301	58	95
1,3-Butadiene	0.05	0.05	0.05	58	95
Carbon tetrachloride	0.05	0.05	0.05	58	95
Chloroform	0.1	0.1	0.05	58	95
1,2-Dichloropropane	0.15	0.15	0.15	58	95
Dichloromethane	0.27	0.05	0.054	58	95
Tetrachloroethylene	0.1	0.1	0.1	58	95
Trichloroethylene	0.01	0.01	0.01	58	95
Vinyl chloride	0.1	0.1	0.1	58	95
ALDEHYDES					
Acetaldehyde	3.04	2.88	1.861	61	100
Formaldehyde	2.18	1.82	1.291	61	100
	1 st High µg/m³	2 nd High µg/m³	Annual Arithmetic Mean	No. of Samples	Percent Recovery
METALS					
Beryllium	0.0001	0.0001	0.0001	60	98
Cadmium	0.0003	0.0001	0.0001	60	98
Chromium	0.011	0.009	0.0032	60	98
Lead	0.0041	0.0028	0.00154*	46	-
Manganese	0.015	0.012	0.0059	60	98
Nickel	0.015	0.01	0.003	60	98

Table 6-1.2010 Summary of Air Toxics Data

Sampling is conducted for 24 hours once every 6 days

* Does not meet summary criteria, incomplete year

Table 6-2. Air Toxics Collection and Analysis Methods

Parameter	Collection Method	Analysis Method		
VOCs	Stainless Steel Canister- Subambient Pressure	Gas Chromatograph		
ALDEHYDES	Cartridge-DNPH-Silica Sep Pak	High Performance Liquid Chromatography (HPLC)- Photodiode Array		
METALS	Hi-Volume Total Suspended Particulate sampler	Atomic Absorption		

Section 7 AMBIENT AIR QUALITY TRENDS: SLAMS

The following graphs illustrate 5-year trends for PM₁₀, PM_{2.5}, SO₂, NO₂, O₃, and CO from 2006 to 2010 at all SLAMS stations monitoring for those pollutants.

Figures 7-1 and 7-2 are graphs of the PM_{10} annual and maximum 24-hour averages. The maximum 24-hour PM_{10} average at West Beach in 2009 was attributed to construction vehicles travelling on the dirt road next to the station.

Figure 7-3 is the graph of the $PM_{2.5}$ annual averages. Attainment of the $PM_{2.5}$ 24-hour standard is based on the 98th percentile value at each station, which is depicted in Figure 7-4.

Figures 7-5 and 7-6 are graphs of the SO_2 annual and maximum 24-hour averages.

Figure 7-7 and 7-8 show the annual and 1-hour averages, respectively, of NO₂ compared to the federal NAAQS.

Attainment of the 8-hour ozone standard is achieved by averaging 3 years of the fourth highest daily maximum 8-hour average concentrations, which must not exceed 0.075 ppm (standard effective May 27, 2008). Figure 7-9 is a graph of the fourth highest daily maximum value recorded at the Sand Island ozone monitoring station in the past five years.

The graphs for 1-hour and 8-hour carbon monoxide (figures 7-10 and 7-11, respectively) represent the maximum 1-hour or 8-hour values recorded in the year.

Criteria pollutant levels remain below state and federal ambient air quality standards at all SLAMS stations in the state.

Figure 7-1. PM₁₀ Annual Average: 2006 – 2010

Figure 7-2. PM₁₀ Maximum 24-Hour Average: 2006 – 2010

Figure 7-3. PM_{2.5} Annual Average: 2006 – 2010

Figure 7-4. PM_{2.5} 98th Percentile 24-Hour Average: 2006 – 2010

Figure 7-5. SO₂ Annual Average: 2006 – 2010

Figure 7-6. SO₂ Maximum 24-Hour Average: 2006 – 2010

Figure 7-7. NO₂ Annual Average 2006 – 2010

Figure 7-8. NO₂ Maximum 1-Hour Average: 2006 – 2010

Figure 7-9. O₃ Fourth Highest Daily Maximum 8-Hour Average: 2006 – 2010

Figure 7-10. CO Maximum 1-Hour Average: 2006 – 2010

Figure 7-11. CO Maximum 8-Hour Average: 2006 – 2010